The Hojman Construction and Hamiltonization of Nonholonomic Systems

نویسندگان

  • Ivan A. BIZYAEV
  • Alexey V. BORISOV
  • Ivan S. MAMAEV
چکیده

In this paper, using the Hojman construction, we give examples of various Poisson brackets which differ from those which are usually analyzed in Hamiltonian mechanics. They possess a nonmaximal rank, and in the general case an invariant measure and Casimir functions can be globally absent for them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonholonomic Hamilton–jacobi Theory via Chaplygin Hamiltonization

We develop Hamilton–Jacobi theory for Chaplygin systems, a certain class of nonholonomic mechanical systems with symmetries, using a technique called Hamiltonization, which transforms nonholonomic systems into Hamiltonian systems. We give a geometric account of the Hamiltonization, identify necessary and sufficient conditions for Hamiltonization, and apply the conventional Hamilton–Jacobi theor...

متن کامل

Nonholonomic Hamilton-Jacobi Theory via Chaplygin Hamiltonization

This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1]. In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the...

متن کامل

A Generalization of Chaplygin’s Reducibility Theorem

In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic systems with symmetry described by the Hamilton-Poincaré-d’Alembert equations in arbitrary degrees of freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as Euler-Poincaré-Suslov systems in arbitrary degrees ...

متن کامل

Non–standard Construction of Hamiltonian Structures

Examples of the construction of Hamiltonian structures for dynamical systems in field theory (including one reputedly non–Hamiltonian problem) without using Lagrangians, are presented. The recently developed method used requires the knowledge of one constant of the motion of the system under consideration and one solution of the symmetry equation.

متن کامل

Direct Hamiltonization for Nambu Systems

The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any dynamical system described by the equation ~̇r = ~ A(~r) is a Nambu system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016